
PktAnon Manual

November 13, 2014

Contents

1 Introduction 2

2 Quick Start 4

3 Building and Running PktAnon 6

4 PktAnon Configuration File 9

5 Supported Packets 12

6 Anonymization primitives 18

1

1

Introduction

PktAnon is a generic framework for anonymization of network traces. The user provides an anonymization
profile – a small configuration file where he or she describes how individual fields in packets’ headers must
be processed. An anonymization profile consists of a list of packets, and for each field in the packet header
an anonymization primitive is specified. Anonymization primitive is a function that transforms an original
field into an anonymized field. For example, a user can configure ipv6 addresses to be anonymized using
SHA1 anonymization primitive. PktAnon parses the packets from the input source and applies configured
anonymization primitives to the listed fields.

The main design decision in PktAnon is that anonymized packets are created from scratch. Fields are copied
from the original packets into the new packets after anonymization. Thus no information from the original
trace appears in the anonymized trace, unless it is explicitly configured.

PktAnon comes with code to parse common packets and includes several anonymization primitives. PktAnon
can also be easily extended with new anonymization primitives and new packets.

1.1 Legend

The following symbols are used throughout this document

warning. important information to consider.

less important information

open issue. it is not known whether and how this feature will be implemented. if implemented, the
currently implemented behavior is likely to change

open issue. the feature is not implemented.

The following terminology is used in this document:

packet, record, and protocol data unit in this manual the term record is used to refer to the whole
packet as it is stored in .pcap file or received by a network card. The terms packet and protocol data
unit are used to refer to a single protocol, such as IP in a Ethernet-IP-UDP packet chain.

SAP SAP stands for Service Access Point and means a field in a packet header that is used to select the
next-layer protocol (e.g., ethernet type field, IP protocol field, IPv6 next header field)

2

Anonymization Primitive a function that is used to anonymize fields in a packet. This function accepts
field value as an array of bytes and returns another array of bytes that has the same length or is smaller
than the original.

1.2 List of Changes from pktanon-1.4

PktAnon-1.0-1.4 were incremental updates. PktAnon-2 is a new implementation of PktAnon with the ar-
chitecture changed almost completely and most of the code rewritten from scratch. The original ideas of
PktAnon are kept in the new code and the list of features is preserved as much as possible. Here we list the
changes that are visible to the user.

1. PktAnon now has a new configuration document. We switched from the triggerconf format of the
previous document to the more descriptive tag names. The example of the new configuration document
is shown in Figure 4.1.

2. input and ouput of PktAnon is set using command-line parameters, and not through the configuration
file.

3. PktAnon supports new input and output sources in addition to files and system-in/out. For example
PktAnon can read packets directly from the network.

4. libpktanon includes all code related to packet anonymization and can be easily integrated into other
software.

5. current version runs only on linux.

6. PktAnon can now be extended with new packets and anonymization primitives more easily.

1.3 More Information

PktAnon’s web site: http://www.tm.uka.de/software/pktanon/ PktAnon’s source can be downloaded
from GitHub: https://github.com/KIT-Telematics/pktanon

PktAnon is described in the following papers:

• PktAnon: A Generic Framework for Profile-based Traffic Anonymization, Thomas Gamer,
Christoph P. Mayer and Marcus Schller, PIK Praxis der Informationsverarbeitung und Kommunikation,
2/2008.

• Datenschutzkonforme Anonymisierung von Datenverkehr auf einem Vermittlungssystem,
Thomas Gamer, Christoph P. Mayer and Marcus Schller, Vortrag auf dem 2. Essener Workshop ”‘Neue
Herausforderungen in der Netzsicherheit”’ an der Universitt Duisburg/Essen, October 2006.

• Datenschutzkonforme Anonymisierung von Datenverkehr auf einem Vermittlungssystem,
Christoph P. Mayer, Bachelor Thesis, Institute of Telematics, University of Karlsruhe, July 2006.

3

http://www.tm.uka.de/software/pktanon/
https://github.com/KIT-Telematics/pktanon

2

Quick Start

2.1 Building PktAnon

PktAnon requires autotools and a compiler that supports C++11. PktAnon uses xml configuration files
and hence requires xerces-c1 xml parser to read the configuration. If you want to use hash functions, then
libnettle is also required.

1. download the latest version of PktAnon

git clone https://github.com/KIT-Telematics/pktanon.git

2. change into the project directory and run the autotools chain

cd pktanon

./bootstrap

./configure

./make

3. PktAnon executable will be pktanon file in the project directory

2.1.1 Running PktAnon

PktAnon need configuration file. Sample configuration files can be found in the profiles directory in the
distribution. This directory also includes a sample network trace. Two included configuration files are
profile-identity.xml and profile.xml. When used with the former configuration file PktAnon will copy
all the fields from original packets into anonymized packets with the exception of packets’ content which is
cropped. Wth the second configuration file, PktAnon will anonymize mac addresses, ip addresses, and ports
in the packets.

profile.xml requires PktAnon compiled with libnettle support. libnettle will be used if it can be
found on the system.

1xerces.apache.org

4

xerces.apache.org

To see available command-line parameters run:

$./pktanon --help

To anonymize sample trace using sample configuration files run:

$./pktanon -c profiles/profile-identity.xml profiles/sample.pcap out.pcap

or

$./pktanon -c profiles/identity.xml profiles/sample.pcap out.pcap

The output should look like this:

pktanon --- profile-based traffic anonymization

initializing PktAnon, configuration = profiles/profile-identity.xml

istream: opened file profiles/sample.pcap

ostream: opened output file out.pcap

initialized

complete

statistics for input file ’profiles/sample.pcap’

processed packets: 9

errors in packets: 0

elapsed time: 22us

Mpps: 0.409

The anonymized trace out.pcap will be created in the root directory of the distribution.

If the output file already exists it will be trimmed and rewritten without any warning.

5

3

Building and Running PktAnon

3.1 Dependencies

PktAnon uses autotools.

PktAnon depends on the following software:

required compiler with C++11 support. PktAnon requires thread library, functions library, and random
number generation library

current version was tested only on gcc 4.8

required xerces-c. PktAnon requires xerces to parse its configuration files.

optional nettle/gnutls. Anonymization primitives that do cryptographic operations require nettle library.
Without the cryptographic library the primitives will not be available.

optional libpcap. PktAnon can capture packets with libpcap directly from the network interface.

3.2 Building PktAnon

PktAnon distribution can be downloaded from the PktAnon web-site:

git clone https://github.com/KIT-Telematics/pktanon.git

Change directory to the root directory of the distribution:

cd pktanon

Run autotools chain:

./bootstrap

./configure

./make

Previous versions of PktAnon included anonymization primitives AnonBytewiseHashSha1 and AnonByte-
wiseHashHmacSha1. They are now deprecated and are not compiled by default. To include them the
--enable-bytewisehashanons parameter should be passed to the configure script. They also depend on
cryptographic library.

6

./configure --enable-bytewisehashanons

PktAnon executable will be in the root directory of the distribution.

3.3 Running PktAnon

PktAnon requires configuration file as well as configuration of input and output. The list of options can be
seen with pktanon --help. By default PktAnon will search for file profile.xml in the current directory.
To use another configuration file use -c path-to-profile option.

Following are some examples of how to run PktAnon with different inputs and outputs.

3.3.1 pcap-file to pcap-file

To transform one trace file into another one run call:

pktanon -c <anon profile> <input_file> <output_file>

This mode is also affected by -s/--snaplen parameter: only first snaplen bytes of each packet are read from
the file, the rest of the packet is ignored.

If for some reasons libpcap is preferable to std::iostream, use -l option to use libpcap for files io.

pktanon -c <anon profile> -l <input_file> <output_file>

3.3.2 live capture to pcap-file

PktAnon can use libpcap to capture packets from the network. In this case input file parameter is not
present, but the --interface option must be present.

pktanon -c <anon profile> -i <interface> <output_file>

Additionally it is possible to specify capture filter (-e filter) and not set interface into promiscuous mode
(-p). Filters are compiled using libpcap. See documentation for libpcap for filter syntax.

pktanon -c <anon profile> -i <interface> [-p] [-e <filter>] <output_file>

If libpcap is not available, pktanon can use raw sockets (-r) to capture files directly. In this case filters are
not available.

pktanon -c <anon profile> -i <interface> -r [-p] <output_file>

Both libpcap-live and raw sockets require appropriate privileges, most likely running pktanon from superuser.

3.3.3 send anonymized records stream (with pcap header)

PktAnon can send anonymized stream to the remote tcp receiver. Basic syntax is:

7

pktanon -c <anon profile> -o <address>:<port> <input_file>

If remote address is IPv6 then add -6 options. To use udp instead of tcp use -u. If tcp is used pcap file
header will be sent before any records. If udp is used, pcap file header will not be sent, since it is not possible
to know whether it was delivered. Also in case of udp each anonymized packet together with its record header
will be sent in separate udp packet.

pktanon -c <anon profile> -o <address>:<port> [-6] [-u] <input_file>

3.3.4 send anonymized records on the network

PktAnon can send packets directly on the network using libpcap inject functionality.

pktanon -c <anon profile> -n <output interface> <input_file>

To receive packets from the network and send anonymized packets back on the network use:

pktanon -c <anon profile> -i <input interface> -n <output interface>

8

4

PktAnon Configuration File

PktAnon requires a configuration file in xml format. Configuration file speficies how packets should be
processed. It consists of global parameters and a so called anonymization profile which says how individual
fields in packets should be processed. An example configuration file is shown in Figure 4.1. This section
explains general struction of the configuration file and the next two chapters explain supported packets and
anonymization primitives.

<?xml version="1.0" encoding="UTF-8"?>

<pktanon-config>

<parameters>

<param name="recalculate-ipv4-header-checksum">yes</param>

</parameters>

<anonymizations>

<packet protocol="ethernet">

<field name="mac-source" anon="AnonIdentity" />

<field name="mac-dest" anon="AnonIdentity" />

<field name="ethertype" anon="AnonIdentity" />

</packet>

<packet protocol="ip">

<field name="tos" anon="AnonIdentity"/>

<field name="identification" anon="AnonIdentity"/>

<field name="flags" anon="AnonIdentity"/>

<field name="fragment" anon="AnonIdentity"/>

<field name="ttl" anon="AnonIdentity"/>

<field name="protocol" anon="AnonIdentity"/>

<field name="src-ip" anon="AnonIdentity"/>

<field name="dest-ip" anon="AnonIdentity"/>

<field name="options" anon="AnonShorten" newlen="0"/>

</packet>

<packet protocol="tcp">

<field name="source-port" anon="AnonIdentity"/>

<field name="dest-port" anon="AnonIdentity"/>

<field name="seq" anon="AnonIdentity"/>

<field name="ack" anon="AnonIdentity"/>

<field name="flags" anon="AnonIdentity"/>

<field name="window-size" anon="AnonIdentity"/>

<field name="urgent-pointer" anon="AnonIdentity"/>

<field name="options" anon="AnonIdentity"/>

</packet>

<packet protocol="payload">

<field name="payload" anon="AnonShorten" newlen="0"/>

</packet>

</anonymizations>

</pktanon-config>

Figure 4.1: An Example Configuration File

9

Parameters in the configuration file can have following values:

boolean parameters parameters which indicate whether the option is enabled or disabled. Values ’1’, ’yes’,
and ’on’ indicate enabled option and ’0’, ’no’, and ’off’ disable the option.

integer parameters must be unsigned integers without delimiters.

bytes must be hexadecimal integers prefixed by ’0x’, sich as 0xff.

default values some parameters have default values that are indicated by ’auto’ or ’default’ keyword.

All parameter names and values are case sensitive.

4.1 Global Parameters

Global parameters are written in the parameters section of the configuration file.

<parameters>

<param name="{param name}">{param value}</param>

</parameters>

Currently supported parameters indicate how PktAnon process packets. They are explained in Chapter 5.

4.2 Anonymization Profile

Anonymization profile configures how fields in protocol headers are handled. It includes a list of protocol
headers that should be processed and how each field in the header should be anonymized. The list of supported
protocols can be found in Chapter 5 and the list of supported anonymization primitives in Chapter 6.

The anonymization profile is enclosed in <anonymizations> tags.

<anonymizations>

<!-- anonymization profile -->

</anonymizations>

Inside the anonymization profile it is necessary to list all packets whose headers should be anonymized.
Configuration of a packet is enclosed in <packet> tags and the protocol attribute specifies the protocol
name.

<packet protocol="{protocol name}">

<!-- packet configuration -->

</packet>

For each packet it is necessary to list the fields that should appear in the anonymized trace and how these
fields must be processed.

<packet protocol="{packet name}">

<field name="{field name}" anon="{anon primitive name}" />

</packet>

If the field is not configured in the anonymization profile it will be absent in the output trace
(with the exception of recalculated fields, such as lengths and checksums). To copy the field in the
anonymization profile without modifying it the field must be present and must use AnonIdentity
primitive (Section 6.1.4)

10

If the field must be processed by more than one anonymization primitive, then the list of anonymization
primitives can be enclosed in the <anon> tag in the <field> tag.

<packet protocol="{packet name}">

<field name="{field name}">

<anon name="{first anon primitive}"/>

<anon name="{second anon primitive}"/>

...

</field>

</packet>

Several anonymization primitives can be useful in, for example, the following situation. It is required to
anonymize all mac-addresses of individual computers, but the broadcast addressed must remain broadcast
addresses in the trace. In this case one might use an AnonBroadcastHandler, which will prevent anonymiza-
tion of broadcast addressed by the second primitive, and then the desired primitive for other mac-addresses.

<field name="mac-dest">

<anon name="AnonBroadcastHandler"/>

<anon name="AnonHashSha1"/>

</field>

11

5

Supported Packets

PktAnon processes traces on a per-record basis. All records are assumed to have the same link-layer protocol.
For pcap files the link-layer protocol is determined from the pcap file header. After the link-layer header is
processed, PktAnon chooses the apropriate next packet for the next protocol header. This process continues
as long as the next header is 1) supported and 2) configured. If PktAnon can’t process next header, it calls
PayloadPacket. The list of supported protocols is shown in Table 5.1.

packet-config section
ethernet 5.1
linux sll 5.2

vlan 5.3
arp 5.4

ip,ipv4 5.5
ipv6 5.6
icmp 5.7
icmp6 5.8

tcp 5.9
udp 5.10

Table 5.1: Supported Packets

all packets’ and fields’ names are case-sensitive.

Additionally following parameters affect how packets are processed:

pad-ethernet-packets pad ethernet packets to the minimum lengths of 60 bytes. possible values are
always, keep-length (pad only if original packet length was bigger than 60 bytes), never (keep length
as it is).

recalculate-ipv4-header-checksum recalculate checksums in ipv4 packets (boolean).

recalculate-payload-checksums recalculate checksums in tcp and udp packets (boolean).

If you are using PktAnon binary, then incomming packets will be trimmed to the specified snaplen

value (default: 256 bytes) before being processed by the link-layer packet. If you configure PktAnon
not to cut packet payloads or some of the packets have long headers than you should change this
parameter as well.

12

5.1 Ethernet

Ethernet packet can be used for ethernet frames with 6 byte MAC addresses. The example configuration for
ethernet packet is shown below:

<packet protocol="ethernet">

<field name="mac-source" anon="AnonHashSha1" />

<field name="mac-dest" anon="AnonHashSha1" />

<field name="ethertype" anon="AnonIdentity" />

</packet>

If the ethertype field is not specified, it will be set to 0 in the output packet, possibly making
the trace unreadable. It is recommended to use AnonIdentity or AnonKnownEthertype/ AnonCon-
stOverwrite pair for the ethertype field.

All fields do not support length changes, that is if the anonymization shrinks the length of the field, the rest
of the filled will be filled with nonce.

Based on the ethertype, the next packet can be vlan tag, arp, ip, or ipv6.

the next packet is selected based on the ethertype field before the anonymization.

5.2 Linux Cooked Capture

Linux cooked capture or linux sll is a ’link layer’ for captures from any network interface. Following fields
can be anonymised:

<packet protocol="linux_sll">

<field name="packet-type" anon="AnonIdentity" />

<field name="ll-address-type" anon="AnonIdentity" />

<field name="ll-address" anon="AnonIdentity" />

<field name="protocol" anon="AnonIdentity" />

</packet>

The packet is called linux sll with an underscore

The next packet is selected based on protocol field which is identical to ethertype field in Ethernet packet.

the next packet is selected based on the protocol field before the anonymization.

5.3 Vlan Tag

This packet is not tested.

Following fields of vlan tag can be processed:

<packet protocol="vlan">

<field name="priority" anon="AnonIdentity"/>

<field name="cfi" anon="AnonIdentity"/>

<field name="id" anon="AnonIdentity"/>

<field name="ethertype" anon="AnonIdentity"/>

</packet>

13

If the ethertype field is not specified, it will be set to 0 in the output packet, possibly making the
trace unreadable.

the next packet is selected based on the ethertype field before the anonymization.

5.4 ARP

Following fields of ARP packet can be processed:

<packet protocol="arp">

<field name="hardware-type" anon="AnonIdentity"/>

<field name="protocol-type" anon="AnonIdentity"/>

<field name="hardware-size" anon="AnonIdentity"/>

<field name="protocol-size" anon="AnonIdentity"/>

<field name="opcode" anon="AnonIdentity"/>

<field name="sender-mac" anon="AnonIdentity"/>

<field name="sender-ip" anon="AnonIdentity" />

<field name="target-mac" anon="AnonIdentity"/>

<field name="target-ip" anon="AnonIdentity"/>

</packet>

All fields do not support length changes.

ARP packets are assumed to have IPv4 Address as a protocol address and MAC as a hardware
address. The hardware/protocol types and lengthes are not checked.

5.5 IPv4

Following fields of the IPv4 header can be anonymized:

<packet protocol="ip">

<field name="tos" anon="AnonIdentity"/>

<field name="identification"anon="AnonIdentity"/>

<field name="flags" anon="AnonIdentity"/>

<field name="ttl" anon="AnonIdentity"/>

<field name="protocol" anon="AnonIdentity"/>

<field name="src-ip" anon="AnonIdentity"/>

<field name="dest-ip" anon="AnonIdentity"/>

<field name="options" anon="AnonShorten" newlen="0"/>

</packet>

In the anonymised packet, the version field is set to 4. The fields – header length and header checksum

are recalculated. Checksum recalculation can be turned off.

If the protocol field is not specified, it will be set to 0 in the output packet, possibly making the
trace unreadable.

If the fragment offset is not zero, packet anonymization is stopped at IP header.

packets with options are not tested

IPv4 packet will invoke transformation of IP, UDP, or TCP headers based on protocol field.

14

the next packet is selected based on the protocol field before the anonymization.

5.6 IPv6

Following fields of the IPv6 header can be anonymised:

<packet protocol="ipv6">

<field name="traffic-class" anon="AnonIdentity"/>

<field name="flow-label" anon="AnonIdentity"/>

<field name="next-header" anon="AnonIdentity"/>

<field name="hop-limit" anon="AnonIdentity"/>

<field name="src-ip" anon="AnonIdentity"/>

<field name="dest-ip" anon="AnonIdentity"/>

</packet>

The version field is set to 6. The payload-length is recalculated.

IPv6 packet will invoke transformation of IP, UDP, or TCP headers based on next-header field.

5.7 ICMP

PktAnon supports anonymization of a generic ICMP header (first 64 bits). The following fields are supported:

<packet protocol="icmp">

<field name="type" anon="AnonIdentity" />

<field name="code" anon="AnonIdentity" />

<field name="rest" anon="AnonIdentity" />

</packet>

The rest is anonymization of bits 32-63 of the ICMP header. The checksum field is recalculated. The rest
of the ICMP packet is ignored.

processing of ICMP packets is likely to change.

ICMP packet doesn’t call processing of further packets.

5.8 ICMPv6 and NDP

PktAnon supports anonymization of a generic ICMPv6 header (first 64 bits). Additionally since PktAnon
supports ARP, the support for NDP Neighbor Solicitation and Neighbor Advertisement is included in the
ICMPv6 packet processing class. Currently it is impossible to choose whether or not to support NDP
messages.

The supported fields for ICMPv6 are:

<packet protocol="icmpv6">

<field name="type" anon="AnonIdentity" />

<field name="code" anon="AnonIdentity" />

<field name="rest" anon="AnonIdentity" />

<field name="target-address" anon="AnonIdentity" />

</packet>

15

The rest is anonymization of bits 32-63 of the ICMPv6 header and it is only called if the packet is NOT
Neighbor Advertisement or Neighbor Solicitation message. If the message is Neighbor Advertisement or
Neighbor Solicitation the value of the rest header is set to 0 and the target-address field is anonymised
as configured. The checksum field is recalculated.

Checksums are not recalculated correctly, that is the resulting checksum is not valid.

the R—S—O— flags of Neighbor Advertisement are ignored.

there will most likely be an option on whether to recalculate checksum or not

this transformation is very likely to change

ICMPv6 packet doesn’t call processing of further packets.

5.9 TCP

Following TCP fields can be anonymized:

<packet protocol="tcp">

<field name="source-port" anon="AnonIdentity"/>

<field name="dest-port" anon="AnonIdentity"/>

<field name="seq" anon="AnonIdentity"/>

<field name="ack" anon="AnonIdentity"/>

<field name="flags" anon="AnonIdentity"/>

<field name="window-size" anon="AnonIdentity"/>

<field name="urgent-pointer" anon="AnonIdentity"/>

<field name="options" anon="AnonIdentity"/>

</packet>

The header length and checksum fields are recalculated.

pktanon doesn’t check the checksum before processing a packet. Packets with wrong checksums will
have their checksum recalculated and set to correct values (unless the anonymization fails for some
other reason).

depending on the values of flags, sequence number and ack fields should have zero values. PktAnon
doesn’t check the flags and transforms the fields anyway. After the transformation wireshark will
show errors in these packets.

packets with options are not tested

After anonymization of TCP header, payload transformation is invoked.

5.10 UDP

Following fields of UDP packet header can be anonymized:

16

<packet protocol="udp">

<field name="source-port" anon="AnonIdentity"/>

<field name="dest-port" anon="AnonIdentity"/>

</packet>

The length and checksum fields are recalculated after the anonymization.

pktanon doesn’t check the checksum before processing a packet. Packets with wrong checksums will
have their checksum recalculated and set to correct values (unless the anonymization fails for some
other reason).

After anonymization of UDP header, payload transformation is invoked.

5.11 Payload

Payload packet is called when PktAnon can’t find any other candidate for the next packet, e.g., unknown
ethertypes and protocol values, or tcp und udp payloads.

<packet protocol="payload">

<field name="payload" anon="AnonShorten" newlen="0"/>

</packet>

currently configuring payload packet is required.

PktAnon binary crops incomming records to the value of parameter snaplen before processing
them. Futher PktAnon was only tested with cropping payloads. Most likely PktAnon will not work
with any other anonymization primitive for payload packet.

17

6

Anonymization primitives

Anonymization primitives are functions that are applied to the values of the fields in packet headers. Func-
tion’s result is written into the anonymized packet.

PktAnon supports chaining of anonymization primitives, which means that several primitives can be applied
to a single field. In this case each primitive will be applied to the result of the previous primitive. Also each
primitive can indicate that no more primitives should be applied. This allows, for example, to write so called
“filters“, which prevent fields with certain values to be anonymized.

PktAnon allows the primitives to reduce the length of the field but not to increase it. Also most header fields
“ignore“ shortening of the field - that is if the field is shorten, the rest of the bytes will be filled with some
random values. This is done so that the resulting traces can be read and interpreted by e.g., tcpdump and
wireshark.

PktAnon will translate all numeric packet fields (including ipv4 addresses) to the host byte order before
calling the appropriate anonymization primitive and back to the network byte order after the anonymization.

Table 6.1 contains a reference of all included anonymization primitives and their parameters.

All anonymization primitives names and parameter names are case-sensitive.

6.1 Anonymizers

These anonymization primitives change values of anonymized fields. Unless otherwise specified they do not
change the lengths of the fields.

6.1.1 AnonConstOverwrite and AnonConstOverwriteRange

AnonConstOverwrite overwrites each byte of the data with a constant byte value. It takes one parameter –
value, which is byte’s value as hexadecimal integer (must preceed with ’0x’).

<field name="mac-dest">

<anon name="AnonConstOverwrite" value="0x0f"/>

</field>

In this example the resulting mac-address field will have a value of 0f-0f-0f-0f-0f-0f.

AnonConstOverwriteRange allows to overwrite only part of the field. It accepts two additional parameters –
range-begin and range-length.

<field name="dest-ip">

<anon name="AnonConstOverwriteRange" value="0x00" range-begin="2" range-length="2"/>

</field>

18

Name Parameters ref Description
AnonIdentity - 6.1.4 Preserves original data.
AnonShorten newlen 6.1.7 Cuts the buffer to the given length.
AnonConstOverwrite value 6.1.1 Overwrites every byte with the provided

value, given in hex (e. g. 0x00).
AnonRandomize - 6.1.5 Overwrites each byte with a random value
AnonShuffle - 6.1.6 Shuffles the bytes of the buffer randomly.
AnonHashSha1 - 6.1.2 Calculates SHA1 hash of the field.
AnonHashSha256 - 6.1.2 Calculates SHA256 hash of the field.
AnonHashHmacSha1 key 6.1.3 Calculates HMAC-SHA1 hash of the field

with a given key.
AnonBroadcastHandler - 6.2.1 Preserves broadcast IP or MAC addresses.
AnonKnownEthertypeHandler - 6.2.2 Preserves ethertypes of protocols that ap-

pear in configuration file.
AnonKnownProtocolHandler - 6.2.3 Preserves protocol numbers that appear in

configuration file.
AnonContinuousChar - [not implemented due to difficulty with mul-

tithreaded version] Overwrites every byte
with continuous values.

AnonWhitenoise strength [very slow] Applies bit-based white noise of
strength between 1 and 10.

AnonCryptoPan key [not tested, should work] Prefix-preserving
anonymization. The key parameter is
needed for the for Rijandel algorithm used
inside the prefix-preserving anonymization.

AnonBytewiseHashSha1 [deprecated and not enabled by default] Hash
every byte separately with SHA1.

AnonBytewiseHashHmacSha1 key [deprecated and not enabled by default] Hash
every byte separately with HMAC-SHA1.
The key parameter is needed as key input
for the HMAC.

Table 6.1: Overview of anonymization primitives in PktAnon

In this example the IP is trimmed to the first two octets or class B address.

6.1.2 AnonHashSha1 and AnonHashSha256

AnonHashSha1 computes SHA1 value of the field. If the length of the field is smaller than SHA1 output
(128 bit = 20 bytes) then the resulting value is truncated to the length of the field (that is fields’s value will
be the first ’length’ bytes of the SHA1 output). If the length of the field is larger than SHA1 output, then
the resulting value will be the repeated copies of SHA1 output with the last one possibly truncated (e.g.
SHA1Value.SHA1Value.SHA1Va)

AnonHashSha256 computes SHA256 value (which is 256bit = 32 bytes) and is otherwise identical.

6.1.3 AnonHashHmacSha1

AnonHashHmacSha1 computes HMAC hash of the field. It accepts a single parameter – key for HMAC. Its
behavior is otherwise identical to the AnonHashSha1.

19

6.1.4 AnonIdentity

AnonIdentity copies the field value in the anonymized packet without modifications. Recall that PktAnon
doesn’t copy any field in the output trace unless it is configured in the configuration file.

<!-- in this configuration only mac-source and

ethertype fields will appear in the output trace.

mac-destination field will have undefined value-->

<packet protocol="ethernet">

<field name="mac-source" anon="{some anon}" />

<field name="ethertype" anon="{some anon}" />

</packet>

<!-- in this configuration mac-dest will be copied

from the input trace to the output trace as it is -->

<packet protocol="ethernet">

<field name="mac-source" anon="{some anon}" />

<field name="mac-dest" anon="AnonIdentity" />

<field name="ethertype" anon="{some anon}" />

</packet>

6.1.5 AnonRandomize

AnonRandomize replaces the data with a random byte string of the same length.

6.1.6 AnonShuffle

AnonShuffle randomly shuffles the bytes of the field. It applies std::random shuffle to the provided field
treating it as a byte array.

6.1.7 AnonShorten

AnonShorten shortens the length of the field or completely removes it. AnonShorten takes one parameter –
newlen. The new length of the field will be the minimum of its current length and the newlen parameter,
e.g., if the length of the field is smaller than newlen the field length will not be changed.

If newlen is zero, field will be removed. This is equivalent to not specifying the anonymization at all.

Most of the packet fields do not support shortening and the shortened fields will be filled with some
undefined values. More precisely if, according to the protocol specification, the protocol field must
have fixed length its length will be preserved in the output trace. If the field can have variable
length it can be shortened and the appropriate length field will be updated. AnonShorten can be
used on fields like ip or tcp options or packet payloads.

Example:

<packet protocol="payload">

<field name="payload" anon="AnonShorten" newlen="0"/>

</packet>

Be very carefull in using AnonShorten in chains on fields that don’t support length changes. If
AnonShorten is the first primitive, then PktAnon will copy only newlen number of bytes into the
destination. If AnonShorten is not the first primitive in chain, than all primitives before will

20

http://en.cppreference.com/w/cpp/algorithm/random_shuffle

proceed, length will be shortened without overwriting rest of the values and when the field ignores
lengh change all bytes after newlen will also appear.

6.2 Filters

These primitives can be used to prevent certain values of fields from anonymization. They must appear in
the configuration before the anonymizer.

6.2.1 AnonBroadcastHandler

This primitive prevents anonymization of broadcast IP and MAC addresses. Addresses, that have all bits
set to 1 are considered broadcast addresses. It must be included before any other primitive to process the
address field. It doesn’t have any parameters:

<field name="mac-dest">

<anon name="AnonBroadcastHandler"/>

<anon name="{anon for the field}"/>

</field>

6.2.2 AnonKnownEthertypeHandler

AnonKnownEthertypeHandler can be used to filter out ethertypes of the packets that are present in the
configuration. It can be used to anonymize ethertypes of ”unknown“ packets.

AnonKnownEthertypeHandler can be applied to Ethernet::ethertype field.

6.2.3 AnonKnownProtocolHandler

AnonKnownProtocolHandler does the same as AnonKnownEthertypeHandler but applies to IP::protocol and
IPv6::next header fiedls.

21

	Introduction
	Quick Start
	Building and Running PktAnon
	PktAnon Configuration File
	Supported Packets
	Anonymization primitives

